

MUTAH UNIVERSITY Faculty of Engineering Department of Electrical Engineering

Course Syllabus			
Course Code	Course Name	Credits	Contact Hours
0401587	Power System Protection	3	3Т

INSTRUCTOR/COORDINATOR		
Name	Dr. Ziyad Almajali	
Email	ziyad@mutah.edu.jo	
Office Hours	10:00-11:00 (Sun, Tues, Thur)	

TEXTBOOK		
Title	Power System Relaying	
Author/Year/Edition	Stanley H. Horowitz and Arun G. Phadke, 2010, 4 th edition, Research Studies Press Ltd.	
Other Supplemental Materials		
Title (1)	Network Protection & Automation Guide	
Author/Year/Edition	AREVA T & D, 2st Edition, 2015.	
Title (2)	Protective Relaying Principles and Applications	
Author/Year/Edition	J. Lewis Blackburn, , 3rd Ed, CRC Press, © 2007.	

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

Principles and components of power system protection; CTs and VTs, zones of protection; primary and backup protection; Relays operating and design: electromagnetic static, numerical; Relays types: over current, Erath-fault, directional, distance, and differential; Apparatus protection, circuit breakers; over voltage protection; system protection, relays co-ordinations.

B. Pre-requisites (P) or Co-requisites (C)

Power Systems (2) (0401482) (**P**)

C. Course Type (Required or Elective)

Required

SPECIFIC GOALS

A. Course Learning Outcomes (CLOs)

By the end of this course, the student should be able to:

<u>**CLO1**</u>: To understand the importance of power system protection in the continuity and reliability of power supply [1].

<u>CLO2</u>: To recognize the power system components and their protection system methods [1].

CLO3: To understand the function, design, and operation of protective system elements [1].

<u>**CLO4**</u>: To study different protection schemes, protection techniques, relays design and types [1].

<u>CLO5</u>: To equip students with skills and knowledge to select, apply and operate protection systems and to introduce the students to the modern trends and development in power system protection [3].

B. Student Learning Outcomes (SOs) Addressed by the Course

1	2	3	4	5	6	7
✓		\checkmark				

BRIEF LIST OF TOPICS TO BE COVERED			
List of Topics	No. of Weeks	Contact Hours	
Unit 1: Introduction and philosophy of power system protection	1	3	
Unit 2: Current and Voltage Transformers (CTs and VTs)	1.5	4.5	
Unit 3:Operating Principles and Design of Protection Relays	1.5	4.5	
Unit 4: Over-Current and Earth Fault Protection	2	6	
Unit 5:Low voltage and Medium Voltage systems protection	1.5	4.5	
Unit 6: Transmission line protection	1.5	4.5	
Unit 7: Transformer protection	2	6	
Unit 8: Rotating Machinery (Generator and Motor) Protection	1.5	4.5	
Unit 9: Busbar, Reactor, and Capacitors protections	0.5	1.5	
Unit 10: Overvoltage Protection : Protective devices and applications	1	3	
Total	14	42	

EVALUATION				
Assessment Tool	Due Date	Weight (%)		
Mid Exam	According to the university calendar	30		
Course Work (Homeworks, Quizzes, Projects,etc.)	One week after being assigned	20		
Final Exam	According to the university calendar	50		

	ABET's Students Learning Outcomes (Criterion # 3)		
	Relationship to program outcomes		
ABET 1-7		Engineering Student Outcomes	
1	\checkmark	an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics	
2		an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.	
3		an ability to communicate effectively with a range of audiences.	
4		an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.	
5		an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.	
6		an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.	
7		an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.	